This repo shows you how to fine-tune an embedding model to improve RAG performance even if you don’t have labelled data (i.e. positive pairs of query/relevant documents).
We walkthrough step-by-step the process of generating a synthetic dataset with LLM, finetuning an opensource embedding model, and finally evaluating the finetuned model.
We experiment with a small scale dataset of financial PDF documents, and show that finetuning the embedding model can substantially improve retrieval performance.