Time series Forcast TimeGPT

Nixtla’s TimeGPT is a generative pre-trained forecasting model for time series data. TimeGPT can produce accurate forecasts for new time series without training, using only historical values as inputs. TimeGPT can be used across a plethora of tasks including demand forecasting, anomaly detection, financial forecasting, and more.

The TimeGPT model “reads” time series data much like the way humans read a sentence – from left to right. It looks at windows of past data, which we can think of as “tokens”, and predicts what comes next. This prediction is based on patterns the model identifies in past data and extrapolates into the future.

The API provides an interface to TimeGPT, allowing users to leverage its forecasting capabilities to predict future events. TimeGPT can also be used for other time series-related tasks, such as what-if scenarios, anomaly detection, and more.

https://nixtla.github.io/nixtla/docs/getting-started/getting_started_short.html

DSPy from Stanfordnlp

https://youtube.com/watch?v=POBcYr0sbcg&si=VD5odGEisjt2fzUi

DSPy is the framework for solving advanced tasks with language models (LMs) and retrieval models (RMs). DSPy unifies techniques for prompting and fine-tuning LMs — and approaches for reasoningself-improvement, and augmentation with retrieval and tools. All of these are expressed through modules that compose and learn.

To make this possible:

  • DSPy provides composable and declarative modules for instructing LMs in a familiar Pythonic syntax. It upgrades « prompting techniques » like chain-of-thought and self-reflection from hand-adapted string manipulation tricks into truly modular generalized operations that learn to adapt to your task.
  • DSPy introduces an automatic compiler that teaches LMs how to conduct the declarative steps in your program. Specifically, the DSPy compiler will internally trace your program and then craft high-quality prompts for large LMs (or train automatic finetunes for small LMs) to teach them the steps of your task.

The DSPy compiler bootstraps prompts and finetunes from minimal data without needing manual labels for the intermediate steps in your program. Instead of brittle « prompt engineering » with hacky string manipulation, you can explore a systematic space of modular and trainable pieces.

For complex tasks, DSPy can routinely teach powerful models like GPT-3.5 and local models like T5-base or Llama2-13b to be much more reliable at tasks. DSPy will compile the same programinto different few-shot prompts and/or finetunes for each LM.

If you want to see DSPy in action, open our intro tutorial notebook.

Knowledge Graph RAG Query Engine

Graph RAG is an Knowledge-enabled RAG approach to retrieve information from Knowledge Graph on given task. Typically, this is to build context based on entities’ SubGraph related to the task.

GraphStore backed RAG vs VectorStore RAG

As we compared how Graph RAG helps in some use cases in this tutorial, it’s shown Knowledge Graph as the unique format of information could mitigate several issues caused by the nature of the “split and embedding” RAG approach.

Graph RAG

Graph-Based Prompting and Reasoning with Language Models

  • Advanced prompting techniques (e.g., chain of thought and tree of thought) improve the problem-solving capabilities of large language models (LLMs).
  • These techniques require LLMs to construct step-by-step responses.
  • They assume linear reasoning, which differs from human reasoning involving multiple chains of thought and insights combination.
  • This overview focuses on prompting techniques using a graph structure to capture non-linear problem-solving patterns.

Graph Prompts

The Novice’s LLM Training Guide

https://rentry.org/llm-training

A modern Large Language Model (LLM) is trained using the Transformers library, which leverages the power of the Transformer network architecture. This architecture has revolutionized the field of natural language processing and is widely adopted for training LLMs. Python, a high-level programming language, is commonly used for implementing LLMs, making them more accessible and easier to comprehend compared to lower-level frameworks such as OpenXLA’s IREE or GGML. The intuitive nature of Python allows researchers and developers to focus on the logic and algorithms of the model without getting caught up in intricate implementation details.

This rentry won’t go over pre-training LLMs (training from scratch), but rather fine-tuning and low-rank adaptation (LoRA) methods. Pre-training is prohibitively expensive, and if you have the compute for it, you’re likely smart enough not to need this rentry at all.

Optimize open LLMs using GPTQ and Hugging Face Optimum

https://www.philschmid.de/gptq-llama

  • Hugging Face Optimum team collaborated with AutoGPTQ library for a simple API to apply GPTQ quantization on language models.
  • GPTQ quantization allows open LLMs to 8, 4, 3, or 2 bits, enabling them to run on smaller hardware with minimal performance loss.
  • The blog covers:
  1. Setting up the development environment.
  2. Preparing the quantization dataset.
  3. Loading and quantizing the model.
  4. Testing performance and inference speed.
  5. Bonus: Running inference with text generation.
  • GPTQ’s purpose is explained before diving into the tutorial.

PromptNER : Prompting For Named Entity Recognition

  • Large Language Models (LLMs) and prompt-based heuristics are being used for off-the-shelf solutions to various NLP problems.
  • LLM-based few-shot methods have shown promise but lag in Named Entity Recognition (NER) compared to other methods.
  • « PromptNER » is introduced as a new algorithm for few-shot and cross-domain NER.
  • PromptNER needs entity definitions and few-shot examples for a new NER task.
  • PromptNER uses LLM to generate potential entities and explanations for their compatibility with entity type definitions.
  • PromptNER achieves state-of-the-art performance in few-shot NER on ConLL, GENIA, and FewNERD datasets.
  • It also outperforms previous methods in Cross Domain NER, setting new records on 3 out of 5 CrossNER domains with an average F1 gain of 3%.

https://arxiv.org/pdf/2305.15444.pdf

https://github.com/promptslab/Promptify

The complete guide to LLM fine-tuning

Pre-trained large language models (LLMs) offer impressive capabilities like text generation, summarization, and coding out of the box. However, they aren’t universally suitable for all tasks. Sometimes, your LLM might struggle with a specific task. In such cases, one option is to fine-tune the LLM, which involves retraining the base model on new data. Although fine-tuning can be complex, costly, and not the initial solution, it’s a potent technique that organizations using LLMs should consider. Understanding the mechanics of fine-tuning, even if you’re not an expert, can guide you in making informed decisions.

https://bdtechtalks.com/2023/07/10/llm-fine-tuning/amp/

Publié dans LLM

Natural Language Understanding

A free Stanford course

XCS224U

Stanford School of Engineering

This project-oriented course focuses on building efficient and reliable models for understanding human language, drawing from linguistics, natural language processing, and machine learning. It covers tasks like contextual language representation, information retrieval, and NLU model evaluation. The course involves hands-on work to build baseline models and develop original models for class-wide competitions. The second half of the course is dedicated to an individual project in natural language understanding, following best practices in the field and incorporating topics like evaluations, semantic parsing, and grounded language understanding.

https://youtube.com/playlist?list=PLoROMvodv4rOwvldxftJTmoR3kRcWkJBp&si=XsWOdyJY7KhEhDJG

Publié dans LLM