QA-LoRA: Fine-Tune a Quantized Large Language Model on Your GPU

State-of-the-art large language models (LLMs) are pre-trained with billions of parameters. While pre-trained LLMs can perform many tasks, they can become much better once fine-tuned.

Thanks to LoRA, fine-tuning costs can be dramatically reduced. LoRA adds low-rank tensors, i.e., a small number of parameters (millions), on top of the frozen original parameters. Only the parameters in the added tensors are trained during fine-tuning.

LoRA still requires the model to be loaded in memory. To reduce the memory cost and speed-up fine-tuning, a new approach proposes quantization-aware LoRA (QA-LoRA) fine-tuning.

In this article, I explain QA-LoRA and review its performance compared with previous work (especially QLoRA). I also show how to use QA-LoRA to fine-tune your own quantization-aware LoRA for Llama 2.

https://towardsdatascience.com/qa-lora-fine-tune-a-quantized-large-language-model-on-your-gpu-c7291866706c

Meta COT prompting

Meta-CoT: Generalizable Chain-of-Thought Prompting in Mixed-task Scenarios with Large Language Models

Meta-CoT is a generalizable CoT prompting method in mixed-task scenarios where the type of input questions is unknown. It consists of three phases: (i) scenario identification: categorizes the scenario of the input question; (ii) demonstration selection: fetches the ICL demonstrations for the categorized scenario; (iii) answer derivation: performs the answer inference by feeding the LLM with the prompt comprising the fetched ICL demonstrations and the input question

https://arxiv.org/abs/2310.06692

https://github.com/Anni-Zou/Meta-CoT